National Aeronautics and Space Administration

Single-Event Effects in Silicon and Silicon Carbide Power Devices

Jean-Marie Lauenstein, Megan C. Casey, and Kenneth A. LaBel Code 561, NASA Goddard Space Flight Center

> Alyson D. Topper, Edward P. Wilcox, Hak Kim, and Anthony M. Phan ASRC Space & Defense

List of Acronyms

BJT – Bipolar Junction Transistor

BVdss – Drain-to-Source Breakdown Voltage

ETW – Electronic Technology Workshop

FY - Fiscal Year

GRC – Glenn Research Center

GSFC – Goddard Space Flight Center

HEMT – High Electron-Mobility Transistor

I_D – Drain current

I_G – Gate current

JEDEC – (not an acronym)

JESD - JEDEC Standard

JFET – Junction Field-Effect Transistor

JJAP – Japanese Journal of Applied Physics

JPL – Jet Propulsion Laboratory

LBNL – Lawrence Berkeley National Laboratory 88-Inch cyclotron

LET – Linear Energy Transfer

MOSFET – Metal Oxide Semiconductor Field Effect Transistor

NEPP – NASA Electronic Parts and Packaging program

PIGS – Post-Irradiation Gate Stress

RF – Radio Frequency

SEB – Single-Event Burnout

SEE – Single-Event Effect

SEFI – Single-Event Functional Interrupt

SEGR – Single-Event Gate Rupture

SEP – Solar Electric Propulsion

SET – Single-Event Transient

SOA – State-Of-the-Art

TID – Total Ionizing Dose

VDMOS – vertical, planar gate double-diffused power MOSFET

V_{DS} – Drain-source voltage

V_{GS} – Gate-source voltage

V_R – Reverse-bias Voltage

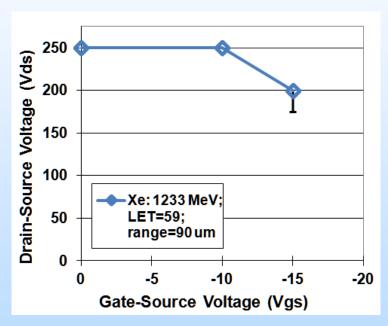
Goals

Assess SiC power devices for space applications

- Develop relationships with SiC device suppliers
- Investigate SEE susceptibility of currently available products
- Understand SEE mechanisms to enable radiation hardening

Participate in test method revisions:

 Lead JEDEC JESD57 revision: "Test Procedure for the Measurements of Single-Event Effects in Semiconductor Devices from Heavy Ion Irradiation" – current version is from 1996


Evaluate alternative silicon power MOSFETs for space applications

- Winding down focus on Si VDMOS: We've gone from 1 to 6 manufacturers offering independently verified SEE radiation-hardened discrete silicon power MOSFETs!
- Thank you to all manufacturers who partnered with us over the years to provide this critical product to the aerospace community
- We are always interested in SOA high-performance Si MOSFETs..

Si Power MOSFETs

- FUJI advanced 2nd generation radiation-hardened VDMOS:
 - Developed to withstand PIGS test
 - Hardness of 250 VDMOS evaluated at LBNL failures only at -15 Vgs
 - 500 V device in development

Single-event effect response curve of FUJI engineering samples of new 250 VDMOS

 NEPP (JPL) invited to observe Microsemi 2nd generation i2MOSTM SEE testing this summer

JEDEC Standard No. 57 (JESD57) Revision Efforts

JESD57: "Test Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy Ion Irradiation"

- FY13 efforts: update SEGR test method within JESD57
 - Current understanding of ion species and energy effects
 - Guidance for beam selection based on species
 - Scope expanded:
 - Discrete MOSFETs of various topologies
 - Microcircuits
- FY14 efforts include complete JESD57 update
 - Document reorganization
 - Addition of SEB, SET
 - Expansion of SEFI understanding
 - and more

JESD57 Content Revision

Key content updates:

- Basic effects expanded to better address:
 - SEB, SEFIs, SEGR, SETs
 - Effects not well understood to be addressed as "notes":
 - SiC and Si Schottky burnout-like failures
 - RF SEE challenges, including on-state catastrophic failures in GaN HEMTs

Definitions updated to current JESD88

- Some definitions are still out-of-date need to be expanded to reflect current understanding of effects
 - SEFI, SEU

DUT preparation expanded

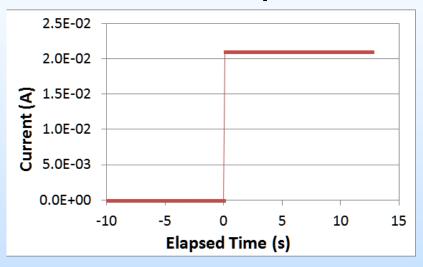
- Die thinning
- High-voltage die arcing after decapsulation
- Dosimetry practices updated
- Document reorganized for improved readability

SiC Power Devices Evaluated to Date

Part Type	Manufacturer	Part Number	Date Tested
Schottky (1200 V)	Cree	C4D40120D*	Spr 2013
	GeneSiC	GB20SLT12*	Sum 2013
Schottky (650 V)	Infineon	IDW40G65C5*	Sum 2013
MOSFET (1200 V)	Cree	Gen 2.0*	Fall 2013
		Gen 1.5 (prototype)*	Fall 2013
		Gen 1.0	Fall 2012
	Cissoid	CHT-PLA8543C*	Sum/Fall 2013
NPN BJT (1200 V)	TranSiC (now Fairchild)	BT1206AA-P1	Sum 2012
JFET, normally off (1200 V)	SemiSouth	SJEP120R100	Sum 2012
JFET, normally off (1700 V)	SemiSouth	SJEP170R550	Fall 2012

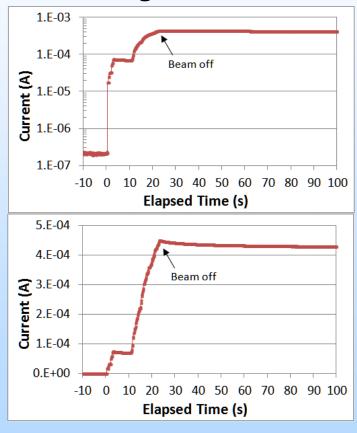
^{*} Evaluated under the NASA SEP Program with support from NEPP

SiC Schottky Diodes



- Two modes of SEE effects, both reported previously in the literature
 - Degradation
 - Catastrophic failure
- Degradation (increasing reverse-bias leakage current) prevents identification of onset bias for single-event catastrophic failure
- As previously reported, catastrophic failure can occur under proton irradiation
- Failure location within active region (as opposed to field termination region)
 - To be verified via failure analysis

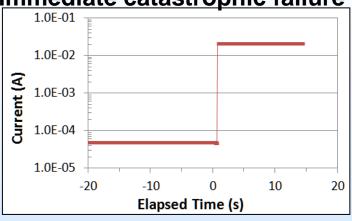
GB20SLT12 Current Signatures



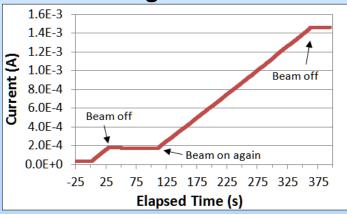
Ag: $V_R = 500 \text{ V}$ avg. flux = 24 /cm²/s: Immediate catastrophic failure

1110 MeV Ag ions: $LET = 66 \text{ MeV-cm}^2/\text{mg}$ $Range = 49 \mu \text{m}$

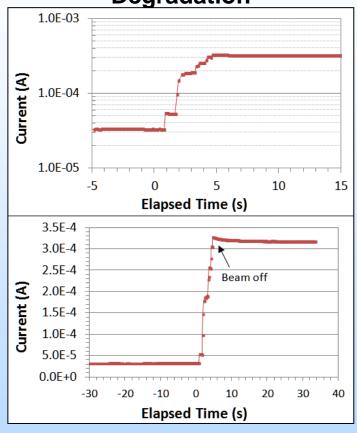
Ag: $V_R = 350 \text{ V}$ avg. flux = 589 /cm²/s: Degradation



C4D40120D Current Signatures



Ag: $V_R = 650 \text{ V}$ avg. flux = $1088 / \text{cm}^2/\text{s}$:


Immediate catastrophic failure 1.0F-01

Ag: $V_R = 300 \text{ V}$ ave flux = $1088 / \text{cm}^2/\text{s}$: **Degradation**

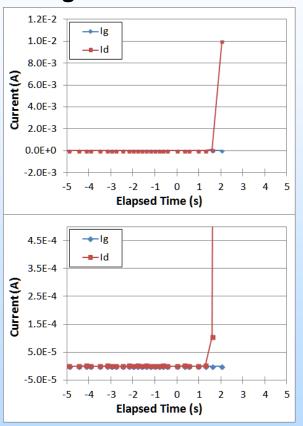
Ag: $V_R = 450 \text{ V}$ avg. flux = $63 / \text{cm}^2 / \text{s}$: **Degradation**

1110 MeV Ag ions: LET = 66 MeV-cm²/mg; Range = 49 μ m

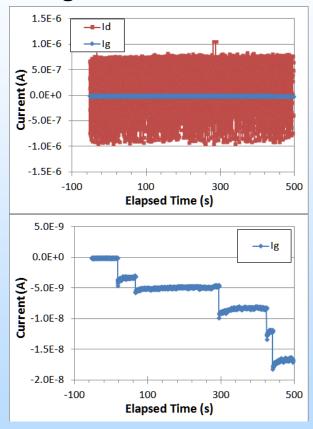
SiC Schottky Diode Damage Signatures

- Degradation of reverse current:
 - Influenced by ion/energy
 - Have not looked at multiple energies for single ion species to isolate energy effects
 - Influenced by reverse bias voltage
 - Does not recover after irradiation
 - Failure analyses to be done to see extent of damage

SiC Power MOSFETs



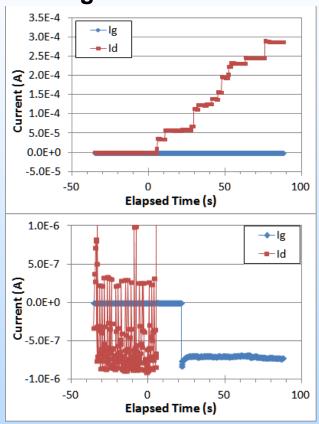
- Two modes of SEE effects as with Schottkys
 - Degradation
 - Catastrophic failure
- Unclear what the primary failure mode is
 - Both gate and drain current increases
 - Substantially thinner gate oxide in Cree generation 2.0 does not result in increased SEGR susceptibility
 - Cree Gen 1.5 shows predominately SEGR signatures
 - Cree Gen 2 shows predominately burnout-like damage
- Susceptibility falls off with angle of incidence
 - assessed only in Cree Gen 1 parts
- Titus-Wheatley critical V_{GS} at 0 V_{DS} holds (unchanged) for Cree MOSFETs (established on gen 1.0)


$$V_{gs(crit)} = \frac{10^7 \times t_{ox}}{1 + \frac{Z}{44}}$$

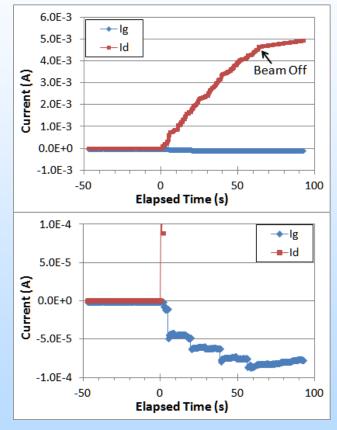
Cree Gen. 2.0 Signatures: Catastrophic Failure; Gate Degradation

Xe: $650 V_{DS}$; $0 V_{GS}$ avg. flux = 17 /cm²/s

Xe: 300 V_{DS} ; 0 V_{GS} avg. flux = 13.5 /cm²/s

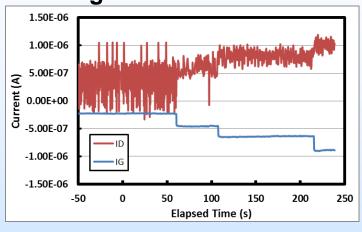

996 MeV Xe ions:

 $LET = 65 \text{ MeV-cm}^2/\text{mg}, Range = 49 \mu\text{m}$

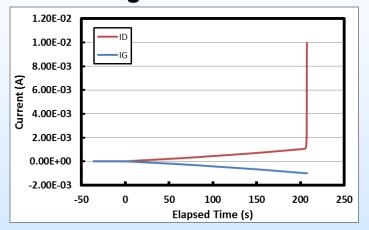

Cree Gen. 2.0 Signatures: Drain-Source Damage

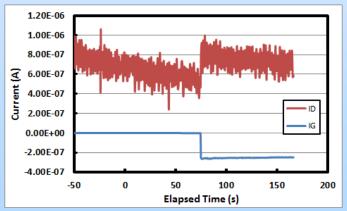
Xe: $500 V_{DS}$ avg. flux = $6 / \text{cm}^2 / \text{s}$

Xe: $500 V_{DS}$ avg. flux = $162 / \text{cm}^2 / \text{s}$


996 MeV Xe ions:

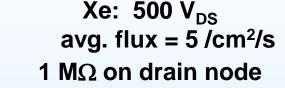
 $LET = 65 \text{ MeV-cm}^2/\text{mg}, Range = 49 \mu\text{m}$

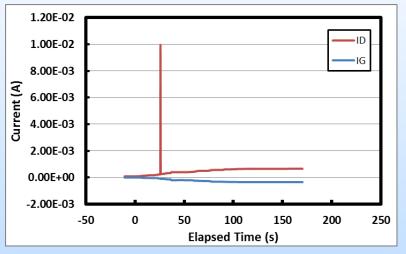

Cree Gen. 1.5 Signatures: Gate-Drain damage

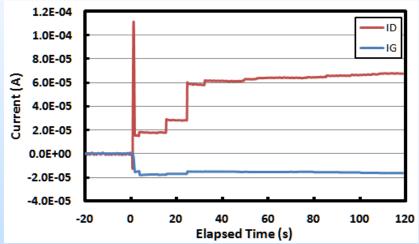

Xe: $182 V_{DS}$ avg. flux = $45 / \text{cm}^2 / \text{s}$

Xe: $400 V_{DS}$ avg. flux = $484 / cm^2 / s$

Xe: $182 V_{DS}$ ave flux = $68 / \text{cm}^2 / \text{s}$




After run on left. BVdss = 912 V (BVdss defined at I_D = 100 μ A). PIGS = 40 μ A at 18 V_{GS} , 0 V_{DS} .


Cree Gen. 1.5 Details: "Protective Mode" Test

Xe: $500 V_{DS}$ avg. flux = $5 / cm^2 / s$ Unprotected test

With protective resistor:

- $\Delta I_D > \Delta I_G$
- I_G shows some temporary recovery
- Failure mode is not pure SEGR

Power MOSFETs (cont'd)

- Revisit protective mode:
 - Apply lower V_{DS} conditions
 - Examine Cree Gen 2 where drain current effects predominate
- Revisit Cree Gen 1 test data to assess predominate failure signature
- STMicro SiC power MOSFETs to be evaluated June 29th
 - Designer will be present
- Negotiating with GeneSiC to obtain samples of their SiC Junction Transistor

Conclusions and Path Forward

- SiC devices show high TID tolerance, but low SEE tolerance
 - Degradation occurs well below rated bias voltage
 - Increased leakage currents with ion fluence are a function of LET and bias voltage on the part
- Identification of a safe operating condition is extremely difficult
 - Degradation interferes with adequate sampling of the die with ions – many samples would be required
 - Degradation may impact part reliability
- Signatures are similar across manufacturers and part types:
 - Mechanism is more fundamental than geometry or process quality
 - Recent research (Shoji, JJAP, 2014) suggests impact ionization at the epi/substrate interface due to the space-charge induced increase in the electric field results in thermal damage (SEB)
 - Vulnerability tied to much higher heat generation density in SiC vs. Si